Еще долго до того, как возникла общая теория конических сечений, был изобретен ряд отдельных кривых для построения античных задач.

«Треугольные кривые» возникли в одной оптической задаче, поставленной Эйлером [Act. Ac. Petr., 1778, II (1781). Эвольвенты этих кривых он называл «круговидными» (Orbiformen).

Кривым с несколькими осями симметрии посвятил XV главу второго тома своего «Введения» (1748) Эйлер.

Кривыми, длины дуг которых представляют собой некоторые определенные функции, несколько раз занимались Эйлер [Nov. Act. Petr., 1789 (представлено 1776), Mem. Ac. St.-Pet, 1830 (представлено 1781)] и Н. Фус (Nov. Act. Petr., 1805).

На «псевдоциклоиды» (термин Э. Чезаро, 1896), т. е. эпициклоиды с мнимым образующим кругом, натолкнулся еще Эйлер в поисках кривых, подобных своим эволютам различных порядков [Comm. Ac. Petr., 1740 (1750) и Nov. Act. Petr., 1783 (1787)].

«Упругую кривую», т. е. линию, форму которой принимает закрепленный на одном конце упругий стержень, Галилей как это указывает Як. Бернулли (Acta Erud., 1694), также считал параболой. Геометрическую характеристику этой кривой дал Я. Бернулли (Acta Erud., 1694 и 1695). Особенно подробно занялся ею Эйлер в приложении 1 к «Методу нахождения кривых линий» (1744, ср. стр. 202) и в Acta. Ac. Petr., 1782, II (1786).[11]


Конец эпохи сталинизма. Дипломатия мирного cосуществования. Наследство
3 марта 1953 года закончилась более чем тридцатилетнее правление И.В. Сталина. С жизнью этого человека была связана целая эпоха в жизни Советского союза. Со смертью Сталина окончился период неограниченной террористической диктатуры в истории советского режима. В то же время то был период роста, созревания и оформления современного (для ...

Революционное движение в армии
Под непосредственным влиянием Всероссийской Октябрьской политической стачки усилились волнения в армии и на флоте. В октябре-ноябре 1905 года произошло более 200 выступлений солдат, в том числе в Харькове, Ташкенте, Киеве, Варшаве и других городах. В конце октября вспыхнуло восстание моряков Кронштадта, но было подавлено. В ноябре произ ...

Числовые приближенные методы решения уравнений. Метод рекуррентных рядов
Другим приближенным методом, который покоился на совсем иной основе, чем способ Ньютона, и не нуждался в определении границ корней, был метод рекуррентных рядов, сообщенный Даниилом Бернулли в Comm. Ac. Petr., 1728 (1732). Возникновение этого метода было, впрочем, связано с замечаниями Ньютона о применении к решению уравнений сумм степе ...