Теорема Эйлера
Мощным побудительным стимулом явилась для него так называемая теорема Ферма о сравнении атº1 (mod p), значение которой он оценил сразу. Эйлеру принадлежат два доказательства этой теоремы, покоящихся на разных основаниях. Первое [Comm. Ac. Petr., 1736(1741)] использовало тот факт, что все биномиальные коэффициенты, соответствующие показателю степени р, делятся на р, и было проведено с помощью индукции. Второе и третье доказательства появились в Nov. Comm. Ac. Petr. за 1758/59 (1761) и 1760/61 (1763).
В последней статье Эйлер обобщил теорему Ферма, установив (в обозначениях, ведущих свое происхождение от Гаусса), что
аj(m) º 1 (mod m),
где j(т) есть число чисел, взаимно простых с т и меньших т. Встречающееся здесь число j(т), которое по предложению Гаусса называют теперь «функцией Эйлера», последний представил в той же работе в виде
где р, р’, . — простые делители числа т. Если т само есть простое число, то числа 1, 2, 3, ., (р - 1) будут с ним взаимно простыми, и получается важная теорема, высказанная Дж. Вильсоном и опубликованная в 1770 Варингом в его «Алгебраических размышлениях». Теорема эта гласит, что величина 1, 2, 3 . (р - 1)+1 делится без остатка на р, где р, как и всюду здесь, — простое число. Эта теорема, как и теорема Ферма, заключается в установленном Лагранжем [Mem. Ac. Bed., 1771 (1773)] общем сравнении
xp-l - l=(x + l)(x + 2) .(x+p - 1) (mod р)
при x = 0. Она была также доказана Эйлером («Аналитические сочинения», I, 1783) и Гауссом («Арифметические исследования», 1801). Упрощенное доказательство теоремы Ферма дал еще И. Г. Ламберт, охотно занимавшийся и теорией чисел (Nov. Acta Erud., 1769).
§4.3. Вычеты
К важнейшим достижениям в исследовании целых чисел Эйлера привели старания доказать другую, упоминавшуюся уже, теорему Ферма о том, что всякое простое число вида 4п + 1 разбивается на сумму двух квадратов. Эйлер многократно и с различных сторон подходил к этой теореме и при этом нашел ряд интересных предложений. Окончательно доказать ее Эйлеру удалось лишь в 1749 [Nov. Comm. Ac. Petr., 1754/55 (1760)], воспользовавшись тем ходом мыслей, которым он шел в первом доказательстве теоремы о сравнении ат = 1 (mod р). Это привело его к рассмотрению остатков от деления квадратов 12, 22, 32, ., (р - 1)2 на простое число р. Эйлер немедленно увидел, что при этом получаются «многие замечательные свойства, изучение которых проливает немало света на природу чисел». Таким образом, он впервые поставил вопрос о квадратичных вычетах и понял их значение. Здесь уже встречаются и термины: вычеты (residua) и невычеты, (non residua). В том же месте и в позднейших статьях, в которых он занялся степенными вычетами вообще и рассмотрел полные и неполные системы вычетов, он установил важнейшие относящиеся к ним теоремы. В Nov. Comm. Ac. Petr., 1773 (1774) он ввел также понятие и слово «первообразный корень». Поэтому Эйлера справедливо называют творцом теории степенных вычетов, тем более что ему принадлежит и открытие «закона взаимности» квадратичных вычетов, который Гаусс называл «основной теоремой» (theorema fundamentale) и который до недавнего времени приписывали Лежандру. Закон взаимности Эйлер установил еще в 1772, а опубликован он был, правда, без доказательства, в 1783 в первом томе «Аналитических сочинений».
Роль эпохи средневековья в истории человечества
Эпоха Средневековья впервые в истории человечества отчетливо обозначила различия между западной и восточной цивилизациями. В Европе на исходе Средних веков уже сформировался новый тип человека — свободного, деятельного, предприимчивого. Со страхом перед будущим входил человек Запада в Средние века, но покидал их с желанием познать и пре ...
Государственная повинность
Глава военного ведомства исходил из принципа содержания в мирное время мобильной и компактной армии, способной в условиях войны быстро развернуться во всю мощь. Милютин не только добился сокращения срока службы солдат, улучшения условий их жизни, отмены "смертобойных шпицрутенов", улучшения боевой подготовки. Он заменил рекрут ...
Усиление партийно-государственного диктата и свертывание кооперативного
движения
Середина 20-х годов ознаменовалась дальнейшим разрастанием и укреплением партийно-государственной тоталитарной системы, сопровождавшимся новым всплеском «революционного нетерпения», теперь направленного уже не на победу мировой революции, а на реализацию в качестве непосредственной задачи дня «построения социализма в одной отдельно взят ...
