Историческая информация » Выдающаяся роль Леонарда Эйлера в развитии алгебры, геометрии и теории чисел » Числовые приближенные методы решения уравнений. Метод рекуррентных рядов

Числовые приближенные методы решения уравнений. Метод рекуррентных рядов
Страница 1

Другим приближенным методом, который покоился на совсем иной основе, чем способ Ньютона, и не нуждался в определении границ корней, был метод рекуррентных рядов, сообщенный Даниилом Бернулли в Comm. Ac. Petr., 1728 (1732). Возникновение этого метода было, впрочем, связано с замечаниями Ньютона о применении к решению уравнений сумм степеней корней. Способ Бернулли заключался в следующем. Пусть требуется решить уравнение

и пусть выбраны п произвольных чисел Р1, Р2, Р3, ., Рп. Если теперь определить Рп+1, Рп+2, . рекуррентным законом

(т=1, 2, 3, .), то отношение с возрастанием т приближается к наибольшему по абсолютной величине корню уравнения. Даниил Бернулли высказал эту теорему без доказательства. [12] Эйлер в 17-й главе «Введения» (1748) тщательно разобрал этот метод и привел отсутствовавший вывод.

Так как всякий рекуррентный ряд получается из развертывания рациональной дроби, то пусть эта дробь будет равна

откуда получается рекуррентный ряд

А+Вz+Cz2+Dz3+Ez4+Fz5+ и т.д.

его коэффициенты А, В, С, D, и т.д. определятся так:

A=a, B=aA+b, C=aB+bA+c,

D=aC+bB+gA+d, E=aD+bC+gB+dA+e и т.д.

Общий же член, т.е. коэффициент степени zn, найдется из разложения данной дроби на простые дроби, знаменатели коих являются множителями знаменателя

1-az-bz2-gz3- и т.д.

Вид общего члена зависит, главным образом, от свойств простых множителей знаменателя, будут ли они действительными или мнимыми, а так же от того, будут ли они отличны друг от друга или два и более будут одинаковыми. Для последовательного рассмотрения этих различных случаев положим вначале, что все простые множители знаменателя действительны и не равны между собой. Пусть все простые множители знаменателя будут

(1-pz)(1-qz)(1-rz)(1-sz) и т.д.

и тогда данная дробь разложится на простые дроби.

Когда они найдены, то общий член рекуррентного ряда будет равен

примем его равным Pzn; значит, P будет коэффициентом степени zn; у следующих же членов пусть коэффициенты будут Q, R, и т.д., так что рекуррентный ряд будет

А+Bz+Cz2+Dz3+…+Pzn+Qzn+1+Rzn+2+ и т.д.

Теперь положим, что п представляет чрезвычайно большое число, т.е. что рекуррентный ряд продолжен весьма далеко; так как степени неравных чисел тем более отличаются друг от друга, чем они больше, тем между степенями и т.д. будет такое различие, что степень, соответствующая наибольшему из чисел р, q, r и т.д. между собой не равны, то пусть p будет наибольшим среди них. Тогда, если п будет числом бесконечно большим, будем иметь

если же п будет числом не бесконечно, а лишь очень большим, то только приближенно будет Подобным образом будет и, следовательно.

Страницы: 1 2 3


Русско-монгольские связи в XVII в
В отличие от Китая или Маньчжурии, стремившихся в XVI-XVII вв. подчинить себе монгольские земли, связи с Россией, имевшей в этом регионе другие, мирные цели, складывались для монголов достаточно благоприятно. Первые свидетельства о двусторонних контактах относятся к началу XVII в. В 1608 г. в Монголию было направлено первое русское пос ...

Расширение власти Гитлера в Германии.
Прейдя к власти 30 января 1933г. А.Гитлер начал строить свое государство, которое было пропитано и проникнуто нацистской идеологией. Идеология была тем цементом, который скрепил и НСДАП, и вообще всех сторонников Гитлера. Сущность фашистской идеологии заключена в гипертрофированном инстинкте власти. Основными постулатами нацистской ид ...

Культура Киевской Руси при Ярославе Мудром.
Золотым веком древнерусской культуры киевского периода является время княжения Ярослава Мудрого. Именно его стараниями бы возведен на киевскую кафедру митрополит Иларион. Ярослав организовал перевод и переписку книг, создавая тем самым при киевском Софийском соборе первую русскую библиотеку. Большое внимание князь уделял развитию правос ...